New storage materials for thermolchemical storage of low temperature solar thermal energy

Jan Mugele, Helmut Stach, ZeoSys GmbH Berlin
Jochen Jänchen, TFH Wildau (University of Applied Sciences),

Introduction: The company ZEOSYS has emerged from the former German Academy of Science in Berlin. The present emphasis of the company’s activity is focused on experimental and theoretical research works. The research profile spans a wide range from fundamental studies to industrial applications in the areas of environmental protection, medicine and energy technology. The aim of the research and development, whose results are discussed here, corresponded to the above-stated considerations and proceeded in searching and testing of new porous materials for thermochemical storage of solar low-temperature thermal heat. The substantial advantages of the method are very high energy storage densities, the loss-free storage of the thermal heat during the storage time as well as the simultaneous supply of cold and heat.

Thermochemical Energy Storage

Figure 1: Material and energy flow in a closed thermochemical heat storage

Fluid: Water

Advantages (Selection):

• High enthalpy of evaporation
• Dipol character (high interaction)
• Availability
• Non-toxic
• Low price

Solid sorbent: Requirements

Application and selection depends on:

• Temperature of the energy source
• Usable temperature of the application
• Heat transport efficiency
• Stability
• Price

Experimental Setup

Figure 2: Laboratory scale 1.5 L thermochemical storage unit

Figure 3: Schematic representation

Literatures


J. Mugele „Optimierung von Speichermaterialien für den Einsatz in geschlossenen thermochemischen Wärmespeichern für gebäudetechnische Anwendungen“, VDI-Verlag, 2005

The results presented here are the product of a research collaboration between the TFH Wildau and the research and development enterprise ZEOSYS Ltd. The financial support was provided from the German Federal Ministry of Economics and Labour (Grant No. 0329525F).
New storage materials for thermolchemical storage of low temperature solar thermal energy

Jan Mugele, Helmut Stach, ZeoSys GmbH Berlin
Jochen Jänchen, TFH Wildau (University of Applied Sciences),

Experimental methods: Partial dealumination of NaY-Zeolites (Si/Al = 2.3 - 30), Thermo-gravimetry (DTG, DTA) isotherms measurement, determination of adsorption capacities, desorption temperatures and storage densities, measurement carried out using laboratory scale thermo chemical storage unit (1,5 Liter)

Storage Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Si/Al</th>
<th>Elementary cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaLSX</td>
<td>1</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaX</td>
<td>1.3</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaY-1</td>
<td>2.4</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaY-2</td>
<td>7.4</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaY-3</td>
<td>11.4</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaY-4</td>
<td>30</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
<tr>
<td>NaY-5</td>
<td>100</td>
<td>Na₁₈[(AlO₂)₉(SiO₂)₁₉]</td>
</tr>
</tbody>
</table>

Results

1. Storage materials are available for solar driven heat storage with slightly dealuminated NaY zeolites, which fulfills several conditions to thermal requirements. Their frequent application will reduce the recently relatively high zeolite price and thus it will strongly promote the use of thermochemical heat storages.

2. Test on adsorbents SAPO-34 and AlPO-18 types showed that both micro-porous solid materials are well suitable as storage materials for thermochemical heat storage, when solar heat collectors supply a temperature ranges from 100 to 150°C. At the same desorption temperature (TSource), their storage densities and water adsorption capacity exceed that of the corresponding values of NaLSX, NaX and NaY-1.

3. Essential pre-requisite as thermochemical storage materials possess special composite adsorbents, i.e. porous supports (e.g. silica gels, clay/tone minerals among others) impregnated with hydrate-forming salts (e.g. MgCl₂ 6 H₂O, CaCl₂ 6 H₂O among others). However thereby the process conditions are to be kept constant, since otherwise decomposition can occur that leads to a destruction of the system.

4. Two adsorbents from a new adsorbent classes called Metal Organic Framework (MOF) exhibit high water adsorption capacity. This is found to be consistent (or higher) to those studied SAPO-34-samples. A comparison of their specific heat energy (attained from heat storage measurements) with those examined best zeolitic adsorbents displays higher values. Therefore, they seem to be very well suitable for the solar heat storage.

We would like to thank Ms. DI JANSEN und DR D. ACKERMANN for their participation in the experimental works. Our thanks goes also to Mrs. E. Weiler (Berlin), not only for the measurements she has carried out but also for her great support and team work.